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An exact solution is obtained for the plane problem of the diffusion of
a gas from a solution into a stationary cavity behind a symmetric pro-
file for a zero cavitation number in an ideal liquid, and its approxi-
mate generalizations are indicated.

This paper considers the plane problem of the dif-
fusion of a dissolved gas in the flow of an ideal liquid
in the presence of a symmetric stationary cavity on
the body in the streamlining flow. The liquid is as-
sumed to be weightless, inviscid, and incompressible,

Separation of the gases dissolved in the liquid in
the zones of reduced pressure [1-3] may exert con-
siderable influence on the development of cavitational
processes. The problem under consideration here may
be of practical interest in view of the pronounced in-
tensification of gas separation in the presence of a
relative velocity at the phase boundary [4].

Under our assumptions the problem requires the
joint consideration of the equations of motion for an
ideal liquid and the Fick equation describing the dif-
fusion of the dissolved substance in the flow. For the
plane case in rectangular coordinates the Fick equa~
tion has the form
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Here k is the coefficient of molecular diffusion; C is
the concentration of the solution; v, and vy are the
projections of the flow velocity, and these are func-
tions of the coordinates x, y.

Since the concentration C is not included in the equa-
tions of motion, determination of the functions vy and
v,, for the cavitation streamlining regime for a body of
the given shape involves a conventional hydrodynamic
problem whose solution we assume to be available,
Bearing in mind the constancy of pressure at the cavity
boundary, we can write the boundary condition at the
cavity for the diffusion problem in accordance with the
Henry-Dalton law as

C=Cs:Csa_p£' {2)
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Absence of gas exchange with the body at the boundary
yields

9C/on = 0. 27
In the unperturbed flow

C=Cx. (zm

In boundary conditions (2), (2'), and (2") we have used
the following notation: pg and p, are the pressure in
the cavity and the atmospheric pressure, respectively;

Cg and Cg, are the saturation concentrations corre-
sponding to these pressures; n is the normal at the
boundary of the body.

In boundary condition (2) we assume the equation
for the cavity contour to be known from the solution of
the hydrodynamic problem. It is possible to obtain a
rigorous solution in general form of Eq, (1) with bound~
ary conditions (2), (2'}, and (2"), which requires no
specification of vy and v,, or the cavity contour, by
turning to the hydrodynamic stream functions # and the
potential ¢, and taking the lines of constant ¢ and ¢ rath~
er thanthe x-and y-coordinate axestobe the coordinate
lines. In this case, everywhere with the exception of
the critical point at which v§< + V; =0, Eq. (1) trans-
forms to the simplest form
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The change of variables made it possible to eliminate
the variable coefficients from the main equation. Sig-
nificant also is the fact that unlike Eq. (1), Eq. {3) is
constant for all possible shapes of the streamlined
body and the cavity, The boundaries of the region for
which a solution is being sought in the ¢, ¥ plane are
also significantly simplified and assume the form of a
simple section along the ¢-axis for any shape of the
streamlined body.

In this connection, the boundary conditions of the
problem can be written in the form

C=Co, C=C,rc (4)
at an infinite distance from the body and at the bound-
ary of the section, respectively.

The condition specifying an absence of gas exchange
at the boundary of the body is satisfied automatically
as a result of flow symmetry. The results thus ob-
tfined indicate that the possible quantitative variations
in the conditions of the initial problem—associated with
a specific body shape and the conditions of its stream~
lining gas defined by the cavitation number
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for the diffusion problem--affect only the values of the
velocity potential at the extreme points of the cavity.
Here p,, and v, are, respectively, the pressure and
velocity in the unperturbed flow.

A rigorous solution of Eq. (3) for boundary condi-
tions (4) can be obtained only for the case ¢ = 0, which
corresponds to a cavity of infinite length, found in a
regime of jet streamlining (Kirchhoff flow). Extension
to the case of finite cavity dimensions may be achieved
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analogously to the case of friction of a viscous liguid
on a plate of finite length, assuming that the neglected
portion of the semi-infinite section has no effect on the
diffusion processes at a point located upstream.

Considering the boundary conditions, it is possible
to achieve a further simplification of the problem by
turning fo parabolic coordinates:

¢ =E-—n% =2¢%y,

as a result of which the partial differential equation (3)
changes into an ordinary differential equation
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The solution of Eq. (5) with respect to the boundary
conditions for ¢ = 0 is expressed by the probability
integral as a function of the complex argument

Clpiy) = (Ca —Cy) ¥
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where ¢, is the value of the potential at the forward

point of the cavity. To calculate the values of the con- -

centrations C from solution (6) at a given point on the
{(x,y)~plane it is still necessary to solve the hydrody-
namic problem to determine the potential and the
stream function in Eq. (6). For practical purposes,
the determination of the gas flow rate through the cavi-
ty boundary is of great interest. The specific features
of cavitating flows make it possible for this problem

to achieve the transition to physical space in the gen-
eral form.

If 8 denotes the length of the cavity boundary from
its point of convergence with the body, n the normal to
the cavity boundary (with the normal directed into the
flow), and v, the velocity at the cavity boundary, we
can write the familiar relationships:
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Having integrated (8) along the cavity boundary, be-
cause v, =const, we obfain

@ Py = UeS. (10)

Having differentiated (6) with respect to ¢ with consid~
eration given to (7), (9), and (10}, for the concentra-
tion gradient along the normal to the cavity boundary
¢ = 0 we obtain the expression
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The per-second mass flow rate of the gas into the cav-
ity through the element dS of the cavity boundary ac-
cording to the Nernst law is equal to

dM = %€ ds. (12)
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After integration of (12) with consideration of {11) for
the total gas flow rate into a symmetric cavity with
two boundaries each of which exhibits a length L along
the curve and a width B along the generatrix, it is
possible to derive the formula

Co—C, 4o oL

M=t i}/ "B (13)
Analysis of formula (13) shows that in approximate
terms it can be derived if the cavity is assumed to be
thin and it is replaced by its section in the physical
plane along the x-axis, and if it is assumed in the
velocity projections that

U=, v, =0

The additional assumption of the smallness of 8°C/ax*

in comparison with 5°C/9y* makes it possible to extend
formula (13) to the axisymmetric problem.

NOTATION

C is the dissolved gas concentration; k is the gas
diffusivity coefficient in a solution; x and y are the
rectangular coordinates; £ and 1 are the parabolic
coordinates; ¢ and ¥ are the potential and function of
current; v is the flow velocity; p is the pressure; p is
the liquid density; ¢ is the cavitation number; n is the
normal to the boundary of a cavity; s is the arc length
along the cavity boundary; M is the gas mass released
into a cavity per unit time: L is the cavity length along
its boundary; B is the width or size of a body and a
cavity. .
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